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Anthropomorphic Hands

• Tendon-driven robotic hands closely mimic
human biomechanics.

• Offer high dexterity for tasks like grasping,
manipulation, and teleoperation.

• Better compliance and energy efficiency than
joint-controlled designs.

• Direct one-to-one mapping with human
motion aids imitation learning.

• Widely applicable to prosthetics, surgery,
rehabilitation, and HRI.

Pose From Vision
• Visual tracking suffers from occlusions and
field-of-view limitations.

• Marker-based MoCap systems are impractical
for real-world use.

• Depth/RGB sensors introduce noise and
require careful alignment.

• Labeling from vision datasets often lacks
tendon-level granularity.

Contributions
• First large-scale EMG-to-Tendon dataset (193
users, 370 hours, 29 stages).

• Introduced conditional latent diffusion model
(CLDM) for EMG→tendon learning.

• Extensive benchmarking across EMG→pose,
tendon→pose, and EMG→tendon.

• Simulation pipeline using MyoSuite MyoHand
for tendon inverse dynamics.

• Demonstrated tendon signals as effective
intermediate representations.

Converting Pose to Tendon Controls
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Motion capture hand poses are converted into tendon control signals using inverse dynamics in the MyoHand
model. Each frame is mapped to 39 tendon forces via QP-based biomechanical modeling.

Mapping sEMG to Tendon Controls
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Conditional Latent Diffusion Model (CLDM) encodes sEMG and tendon control signals in a shared latent
space. A U-Net-based diffusion model reconstructs tendon control signals conditioned on muscle activations.

Observations
• CLDM outperforms TDS, NeuroPose, and
SensingDynamics across tasks.

• Best pose error: 11.3° (EMG→Pose), 10.8°
(Tendon→Pose).

• Best tendon control error: 0.201 RMSE, 0.139
MAE.

• Physics-informed simulation further improves
accuracy.

• Two-step EMG→Tendon→Pose modeling is
more accurate than direct EMG→Pose.

• Diffusion models handle temporal variability
and user heterogeneity better.
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